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Static packings of perfectly rigid particles with Coulomb friction are investigated theoretically and numeri-
cally. The problem of finding the contact forces in such packings is formulated mathematically. Letting the
values of the contact forces define a vector in a high-dimensional space enables us to consider the set of all
possible contact forces as a region embedded in this same space. It is found that the boundary of the set is
connected with the presence of sliding contacts, suggesting that a stable packing should not have more than
2M −3N sliding contacts in two dimensions, whereM is the number of contacts andN is the number of
particles. These results are used to analyze packings generated in different ways by either molecular dynamics
or contact dynamics simulations. The dimension of the set of possible forces and the number of sliding contacts
agree with the theoretical expectations. The indeterminacy of each component of the contact forces is found, as
well as an estimate for the diameter of the set of possible contact forces. We also show that contacts with high
indeterminacy are located on force chains. The question of whether the simulation methods can represent a
packing’s memory of its formation is addressed.
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I. INTRODUCTION

The physics of granular materials involves two very dif-
ferent length scales. The first length scale is associated with
the size of the particles. If we wish to give an accurate value
of the density or describe the movement of the particles, it
suffices to give the particle positions with an accuracy of
some fraction of their radii. We call this length scale the
“kinetic” length scale,kin and take it to be of order the par-
ticle radius. When two particles touch, interparticle forces at
contacts are generated by tiny deformations that can be char-
acterized by a second length scale, which we will call the
“elastic” length scale,el.

One normally has,el!,kin. If one takes two marbles,,kin
is about half a centimeter. But,el is not visible to the naked
eye, as one can confirm by pushing the marbles together and
trying to observe their deformation. Because one often has
,el!,kin, it is tempting to derive simplified numerical or
theoretical approaches by taking the limit,el→0, corre-
sponding to infinitely rigid particles. One example is the in-
elastic hard-sphere model, where collisions are assumed to
be instantaneous. Instead of resolving the forces during a
collision, one simply calculates the post-collisional velocities
as a function of the precollisional ones.

The inelastic hard-sphere model opens the way to the ap-
plication of kinetic theory and the use of event-driven com-
puter simulations. Both of these techniques have been ap-
plied successfully to a wide variety of granular flows[1–3].
But the neglected length scale,el takes its revenge in an
unexpected way. If the collisions are dissipative, “inelastic
collapse” can occur: there can be an infinite number of col-
lisions in finite time[4,5]. In event-driven simulations, it is
necessary to modify the simple inelastic hard-sphere model
to avoid this singularity. There are two general approaches.

In the first approach, each particle carries a clock that records
the time of its last collision. When two particles collide, one
checks their clocks to see if either one has had a collision
less than some timetc ago. If so, the collision dissipates no
energy; otherwise, the collision proceeds normally. The time
tc corresponds to the duration of a collision[6]. Alternatively,
one can make the restitution coefficient depend on the impact
velocity in such a way that the energy dissipation goes to
zero as the impact velocity vanishes[7].

Another numerical method based on the approximation
,el→0 is contact dynamics(CD) [8–10]. In this method, the
contact forces are calculated by requiring them to prevent
particle interpenetration and to minimize sliding. In this case,
the neglected length scale takes its revenge by causing inde-
terminacy[8]. In most cases, there are many possible force
networks that satisfy the constraints that are imposed on
them. This raises several questions addressed in this paper:
First of all, how big is the set of possible contact forces¿
Second, how are the forces chosen by CD distinguished from
all the other possible solutions? Finally, how do the forces
chosen by CD differ from those calculated by soft-particle
“molecular dynamics”(MD) [11], where the particle defor-
mations are explicitly treated? This paper addresses these
questions.

Another recently proposed approach similar to CD is the
“force network ensemble”[12]. The force network ensemble
is the set of all possible force networks that could exist in a
given configuration of rigid particles. In Ref.[12], this en-
semble was sampled to obtain force distributions, which are
compared with MD simulations. Parallels were drawn be-
tween the force network ensemble and the ensembles of sta-
tistical mechanics, so that one could calculate the properties
of packings by averaging over the force network ensemble.
But are all members of the ensemble equally likely to be
realized?

These questions have begun to be addressed. For ex-
ample, it has been shown that the contact forces in static
assemblies of frictionless grains can be uniquely determined*Email address: sean@ica1.uni-stuttgart.de
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[13]. In Ref. [14], the CD algorithm was adapted to sample
the force network ensemble, allowing the authors to estimate
its size. The authors found that the ensemble was not uni-
formly sampled and that the force state generated by the
dynamics had special properties. They also carried out a de-
tailed study of the influence of tangential friction and showed
that indeterminacy disappears in the limit of vanishing fric-
tion, consistent with Ref.[13].

This paper takes a different, but complementary approach.
We investigate the structure of the force network ensemble
mathematically and show(in agreement with[14]) that it is a
convex set. In addition, we show that the boundaries of the
set are associated with contacts where the Coulomb condi-
tion is marginally fulfilled. These findings place an upper
limit on the number of such contacts that can exist in a static
packing and a lower limit on the dimension of the force
network ensemble. We show how to locate the extremal
points, enabling us to calculate the indeterminacy of the con-
tact forces and to estimate the size of the force ensemble
network. We also study the difference between the MD and
CD calculation methods.

This paper is organized into two main parts. Section II
presents a mathematical formulation of the problem of find-
ing the contact forces in a packing of infinitely rigid disks
with Coulomb friction. It is shown that this problem is
equivalent to finding the intersection of a cone and a linear
subspace in a high-dimensional space. In Sec. III, we apply
these ideas numerically to static packings of about 100 par-
ticles and answer several questions about the range of pos-
sible forces that could exist in the packing and how they are
related to the MD and CD solutions.

II. MATHEMATICAL FORMULATION

A. Definition of the contact matrix

We study a system ofN two-dimensional, circular grains
at rest under gravityg in a rectangular container. We label
each grain with a unique integeri, 1ø i øN. Particle i is
characterized by its massmi, radiusr i, positionrWi, velocityvW i,
momentum of inertiaI i, and angular velocityvi. The fixed
walls of the container could be considered as particles with
infinite mass, but it is more convenient to simply leave them
out of the analysis.

Let M be the number of contacts between theN grains.
Each contact can also be labeled with a unique integera, 1
øaøM. Contacta is characterized by the two touching
grains i and j . Given the positions of particlesi and j , it is
possible to define two unit vectorsn̂a and t̂a that point in the
directions normal to and tangent to the contact, respectively.
At the contact, the two particles exert a normal forceRa and
a tangential forceTa on each other.

To calculate the motion of the particles, it is necessary to

know the forcefWi and the torqueti on each particle due to the

contacts. SincefWi and ti depend linearly on the contact
forces, one can write

f = cF. s1d

Here, the contact forces and the forces experienced by the
particles have been collected together into two column vec-
tors F and f:

f =1
f1x

f1y

t1

A
fNx

fNy

tN

2, F =1
R1

T1

A
RM

TM

2 . s2d

(Throughout this paper, boldface letters indicate vectors in
the high-dimensional spacesR3N and R2M, whereas overar-
rows or hats indicate two-dimensional vectors.)

Note thatf PR3N andFPR2M. The matrixc has dimen-
sions 3N32M and is called the contact matrix. It contains
information about which particles touch each other and the
geometry of the contacts. In Sec. II B, we give explicit ex-
pressions for the components ofc. Following [8], we call any
particular value ofF a “contact state” because it gives the
state of all the contacts in the granular packing.

Using this notation, we can easily write down the system
of equations that must be solved in order to find the forces in
a static granular packing under gravity. If the particles do not
move, the contact forces must balance the gravitational ac-
celeration:

f = − Mg . s3d

Here, M PR3N3R3N is a diagonal matrix containing the
masses and moments of inertia of the particles:

M =1
m1

m1

I1

�

mN

mN

IN

2 . s4d

The vectorg contains the gravitational accelerations of all
the particles, organized in the same way asf in Eq. (2).

In contact dynamics, the unknowns are the contact forces
F, not the forces on each particle, so we use Eq.(1) to re-
write Eq. (3) as

cF = − Mg . s5d

If c were not singular, one could find a unique solution by
inverting Eq.(5):

F = − c−1Mg . s6d

But if c is singular, Eq.(5) has no unique solution, because
there exist vectorsF0Þ0 such that

cF0 = 0. s7d

Physically, this means that there are contact states that exert
no net force on the particles. This is the source of indetermi-
nacy in granular packings[8]. Once we have found a solu-
tion to Eq.(5), we can construct an infinite number of solu-
tions by adding multiples ofF0. However, not all of these
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solutions are possible, for reasons discussed in Sec. II C.
In general,c is singular, and its null spaceC0 plays a very

important role in this paper. By considering the dimensions
of c, one can establish a lower bound on the dimension ofC0.
c can be applied to any vector inR2M, so its domain has
dimension 2M. c maps this vector onto another vector in
R3N, so its range has dimension of at most 3N. Since the
dimension of the range and null space must add to the di-
mension of the domain, we have

dim C0 ù 2M − 3N. s8d

If 2M ø3N, dimC0 could vanish, but this corresponds to a
coordination number of less than 3. Therefore, we expect
that dimC0.0.

B. Construction of the contact matrix

Suppose that particlei and j touch at contacta. Then one
can define a unit vectorn̂a normal to the particle’ surfaces at
the contact:

n̂a =
rWi − rW j

urWi − rW ju
. s9d

To discuss tangential forces, we must define a unit tangential
vector such thatn̂a ·t̂a=0. Givenn̂a, there are two possibili-
ties for t̂a, but t̂a can be uniquely defined by imagining that
the two-dimensional space is embedded in three dimensions
and writing

t̂a = n̂a 3 ẑ, s10d

whereẑ is the unit vector, pointing upwards, perpendicular to
the two-dimensional plane.

With these definitions, it is now possible to write the

forcesDfWia andDfW ja due to contacta on particlesi and j :

DfWia = Ran̂a + Tat̂a, DfW ja = − Ran̂a − Tat̂a. s11d

But this notation is awkward, because it is necessary to dis-
tinguish the two particles of the contact. One of the particles
is “first” (particle i) and the other is “second”(particle j).
The choice of which particle is first is arbitrary, but once the
choice is made, it must not be changed. Accordingly, we
introduce the symbolxia defined by

xia = 51 if particle i is first in contacta,

− 1 if particle i is second in contacta,

0 if particle i does not participate in contacta.
6

s12d

For each contact between two grains, one element ofx is 1
and another is −1. Contacts between a wall and a grain con-
tribute only one nonzero element tox. Using thex symbol,
we give Eqs.(11) as a single equation:

DfWka = xkasRan̂a + Tat̂ad. s13d

This equation holds for 1økøM, so the total force on a
particle can be written as a sum over all contacts:

fWk = o
a=1

M

xkasRan̂a + Tat̂ad. s14d

This equation can be cast in the form of a matrix multiplica-
tion. From Eq. (14) and an analogous equation for the
torques, it is possible to deduce the components ofc. c is a
N3M matrix of submatricescia, where

cia = 1xian̂ax xiat̂ax

xian̂ay xiat̂ay

0 uxiaur i
2 . s15d

C. Contact conditions

Equation(5) does not give a complete description of mo-
tionless granular packings. Granular packings are nonlinear
because only certain contact forces are physically possible.
For dry granular materials with Coulomb friction, two con-
ditions need to be met:

Ra ù 0, uTau ø mRa, s16d

for a=1, . . . ,M. The first condition says that there are no
attractive forces, only repulsive ones. The second condition
states that the tangential force cannot exceedm times the
normal force, where the constantm is the Coulomb friction
ratio. Let us defineK to be the set of all contact states satis-
fying Eq. (16). In Fig. 1, we show the cross section ofK, cut
by the sR,Td plane of a contact.

Later in this paper, our calculations will be greatly sim-
plified becauseK is a convex set. This can be seen from Fig.
1, sinceK is a cone with its vertex at the origin. The con-
vexity of K can also established by a simple proof. Consider
two pointsFA, FBPK. The points

Fl = lFA + s1 − ldFB, 0 ø l ø 1, s17d

lie on a straight line betweenFA andFB. One can show that
FlPK as well, showing thatK is convex.

As we shall see, contacts where an equality holds in Eq.
(16)—i.e., whereRa=0 or uTa u =mRa—play a special role in
limiting the indeterminacy. Contacts withRa=0 are called

FIG. 1. Cross section ofK cut by thesR,Td of a contact. Con-
tacts that satisfy Eq.(16) must lie in the shaded triangular region.
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“nontransmitting” contacts because the particles touch, but
exert no force on each other. Contacts whereuTa u =mRa

holds will be called “sliding contacts” even if there is no
relative motion. This term is used because this equality holds
when two particles slide relative to one another.

D. Set of possible contact states

We are now in a position to find the contact forces in a
static granular packing and understand how indeterminacy
arises. Given an arrangement of particles and external forces
acting on each particle(e.g., gravity), one can calculate the
contact matrixc and the vectorMg. Then one first searches
for a “particular solution”F1 such that cF1=−Mg. These
forces are necessary to cancel the external forces. The par-
ticular solutionF1 can be made unique by requiring that it be
orthogonal to every vector inC0.

In general,F1 will not obey the contact conditions, Eq.
(16), so one must find someF0PC0 such that

F0 + F1 P K. s18d

The sumF0+F1 is a possible contact state. There could be
many vectorsF0PC0 that satisfy Eq.(18), so the solution
may not be unique. On the other hand, not all vectors from
C0 will satisfy Eq. (18).

Let F be the set of all such contact statesF=F0+F1 sat-
isfying Eq. (18). ThenF is the set of all contact states that
could be observed in a given granular packing. We can sum-
marize the requirements of a contact state by writing

F = hF0 + F1uF0 + F1u P K, F0 P C0,cF1 = Mg ,

F1 ·F0
sid = 0 for i = 1¯ dim C0. s19d

HerehF0
sid , i =1¯dimC0j denotes a basis ofC0. In Ref. [12],

F is called the “force network ensemble.”
It is clear that the setF is also convex. LetFa andFb be

members ofF. Then the intermediate pointsFl have the
form

Fl = lFa + s1 − ldFb = F1 + lF0,a + s1 − ldF0,b = F1 + F0,l,

s20d

where we have used the decompositionsFa=F1+F0,a and
Fb=F1+F0,b. It can be shown thatFl satisfies all the condi-
tions in Eq. (19): FlPK becauseK is convex andF0,l
PC0 becauseC0 is a linear subspace. The convexity ofF was
first noted in Ref.[15] and shown in Ref.[14].

If F is empty, the granular packing is unstable and the
particles will move. IfF contains only one point, there is a
unique contact state and there is no indeterminacy. Finally,F
can contain many points. In this case, there is no unique
solution.

E. Boundary of F

The boundary ofF is analogous to the “yield surface” in
the elastoplasticity theory of soils[17]. If a system crosses
the boundary and leavesF, the packing is no longer stable
and the particles will move. When this happens, a new con-

tact matrix must be constructed, including perhaps new con-
tacts, andF and C0 will change. For our purposes, we are
interested in the boundary ofF because it contains the ex-
tremal points, where the contact forces are maximized or
minimized.

To investigate the structure ofF, we will use the concept
of an n-dimensional neighborhood of point. We say a point
FPF has ann-dimensional neighborhood if there exist at
mostn linearly independent vectorsV such that one can find
amin,0 andamax.0 satisfying

F + aV P F for all amin , a , amax. s21d

As an example, consider a line segment embedded in two-
dimensional space. Each point on the line segment has a
one-dimensional neighborhood, and the end points have
zero-dimensional neighborhoods.

Now let us apply this concept to our setF. Let us suppose
that thatF contains a contact stateP0 with no sliding or
nontransmitting contacts. A multiple of any vector inC0 can
be added toP0, as long as it is small enough. Therefore, there
aren=dimC0 linearly independent vectorsV satisfying Eq.
(21), meaning thatP0 has ann-dimensional neighborhood.

Next suppose that we have a pointP1PF with exactly
one sliding contact. Let us label that sliding contactb and
assume that we havemRb

s1d=Tb
s1d. PointsPa=P1+aV obey

mRb
sad − Tb

sad = mRb
s1d − Tb

s1d + asmRb
sVd − Tb

sVdd, s22d

whereRb
sad, Rb

s1d, andRb
sVd are the appropriate components of

Pa, P1, andV, respectively. Since contactb is sliding in the
stateP1, we havemRb

s1d−Tb
s1d=0. Now, note thata takes on

both positive and negative values. IfPa is to satisfy the con-
tact conditions, we also needmRb

sVd−Tb
sVd=0; i.e., contactb

must be sliding inV also. Thus the sliding contact puts a
constraint on the vectorsV that can be used. However, given
any two vectors fromC0, one can construct a linear combi-
nation satisfying this constraint. In this way,n−1 linearly
independent vectors can be constructed, soP1 has an
sn−1d-dimensional neighborhood. Similar reasoning can be
extended to show that a contact state with two sliding con-
tacts has ansn−2d-dimensional neighborhood, and finally, a
contact state withn sliding contacts is a zero-dimensional
neighborhood; that is, it is an extremal point.

So far, nontransmitting contacts have not been considered.
But it is easy to incorporate them, because they can be con-
sidered as two sliding contacts superimposed on each other;
i.e., the contact obeysT=mR andT=−mR at the same time.

F. Quantifying indeterminacy

The indeterminacy of the granular packing is determined
by the size and shape of the setF. SinceF is a convex set
with a finite number of extremal points, one possible ap-
proach would be to locate all its extremal points, but the
large number of such points makes this unfeasible. There-
fore, we adopt an alternative approach. We locate the subset
Fext of extremal points where a component of some contact
force attains its maximum or minimum possible value. Spe-
cifically, for each contacta, four different extremal points
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are found: the state whereRa is maximum, then whereRa is
minimized, and then the states whereTa is maximized and
then minimized.(Note that minimizing a normal force means
making it approach 0 as closely as possible, but minimizing
a tangential force means making it approach −`.)

OnceFext has obtained, different measures of indetermi-
nacy can be extracted. One possibility is to calculated the
range of possible forces that a given contacta can take on:

dR,a =
Rmax,a − Rmin,a

m̄g
, dT,a =

Tmax,a − Tmin,a

m̄g
, s23d

whereRmax,a andRmin,a are the maximum and minimum pos-
sible values of the normal contact force at contacta. To
obtain a dimensionless number, we divide bym̄g, the aver-
age weight of a particle. We calldR anddT the “local inde-
terminacies” because they quantify the ambiguity of the
force at one contact.

One contact force cannot be maximized independently of
the others. One could therefore ask how much the entire
contact force state must change when we bring one contact
force from its minimum value to its maximum. As an alter-
native todR anddT, one could calculate

dR,a =
iFR,max,a − FR,min,ai

m̄g
,

dT,a =
iFT,max,a − FT,min,ai

m̄g
. s24d

Here,FR,max,a is the contact state where the normal force is
maximized at contacta, and the other contact states in Eq.
(24) are defined analogously. These quantities estimate the
“diameter” of F. Note that F is embedded in
a 2M-dimensional space, so that 2M different “diameters”
can be calculated. We calldR and dT the “global
indeterminacies.”

G. Algorithm

We now give the algorithm used to find the maximum and
minimum possible forces at a given contact. The first step is
to locate an extremal point. Let us suppose that we begin
with a point with an n-dimensional neighborhood inF.
Given this point, an extremal point can be found in the fol-
lowing way: Pick one of then vectors from the basis ofC0.
Then, starting from the interior point, move in that direction
until a sliding contact is detected. Thenn−1 linearly inde-
pendent vectors can be constructed out of the basis ofC0, all
of which preserve the status of the sliding contact. Pick one
of these vectors, and proceed in its direction until a second
sliding contact is detected(or the first sliding contact be-
comes nontransmitting). Thenn−2 linearly independent vec-
tors can be built which obey these two constraints. Continu-
ing in this way, we will eventually reach a point where there
aren constraints, and no vectors can be constructed that re-
spect all of them. This is an extremal point.

Once the extremal point has been reached, its neighboring
extremal points can each be identified. Recall that an ex-
tremal point is characterized byn constraints arising fromn

sliding contacts. If we relax one of these constraints, there is
one direction inC0 that respects all the othern−1 con-
straints. If we move away from our extremal point in this
direction, we will eventually encounter a new extremal point.
This is a neighboring extremal point, connected to the cur-
rent point by an edge. Since there aren possible constraints
to relax, each extremal point will haven neighbors. Each of
these neighbors can be checked. If none of them are “better”
than the current point(in the sense that the relevant contact
force is greater or less), then the current point is the best
point. If any one of the neighboring points is better, we move
there and repeat the process. The convex structure ofF guar-
antees that there are no local minima or maxima that would
trap the algorithm.

The algorithm must deal with a number of practical diffi-
culties. For example, it can happen that a contact must al-
ways be sliding or nontransmitting. It is necessary to detect
this, because such a situation reduces the dimension ofF.
Therefore, before beginning to search for extremal points, we
first try to locate a point without sliding contacts. This can be
difficult, because the simulations often yield points with
many sliding contacts. But given such a point, one can con-
struct a vector belonging toC0 that preserves all the sliding
contacts except one and then moving along this vector so
that the number of sliding contacts is reduced by one. This
process can be repeated. Sometimes this does not work, be-
cause the simulation yields a point in a tight, multidimen-
sional corner. In this case, the contact dynamics iterative
solver can be used to generate an alternative starting point.

In about 1% of the cases analyzed in Sec. III extremal
states are found with a different number of sliding contacts
than expected. This may happen when one constructs linear
combinations that satisfy a given constraint and, by chance,
satisfy several other constraints at the same time. Another
possibility is that it is difficult to maintain sufficient numeri-
cal accuracy during the construction of the linear combina-
tions. Recall that one cannot test strict equalities with
floating-point numbers; one should always check that equal-
ity conditions such asT= ±mR are satisfied to a certain tol-
erance. This may cause an occasional overestimate of the
number of sliding contacts. However, since this situation oc-
curs only rarely, it does not affect the conclusions of this
paper.

H. Two contacts

As a simple application of these ideas, consider the granu-
lar packing in Fig. 2, whereM =2 andN=1. The equations of
static equilibrium are

Ra sinf + Ta cosf − Rb sinf + Tb cosf = 0,

Ra cosf − Ta sinf + Rb cosf + Tb sinf = mg,

rTa + rTb = 0. s25d

Comparing this to Eq.(5), we have
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c = 1sinf cosf − sinf cosf

cosf − sinf cosf sinf

0 r 0 r
2 . s26d

This matrix has a null space that has at least one dimension.
Let us find F0 by solving the system of equationscF0=0.
The result is

F0 =1
sinf

cosf

sinf

− cosf
2 . s27d

Note thatF0 corresponds to the horizontal components of the
contact forces canceling each other.

The particular solution can be found by solvingcF1
=Mg and then requiring thatF0·F1=0. The result is

F1 =
mg

2 1
cosf

− sinf

cosf

sinf
2 , s28d

which simply expresses the requirement that the vertical
component of the contact forces cancel gravity. The contact
states inF all have the form

F1 + aF0. s29d

Applying the contact conditions puts restrictions on the val-
ues ofa which are allowed. For example, requiringRaù0
andRbù0 means thata must satisfy the inequality

a ù −
mg

2
cotf. s30d

And the Coulomb condition becomes

m
mg

2
cosf + ma sinf ø U−

mg

2
sinf + a cosfU .

s31d

Working out the various cases connected with the absolute
values, one obtains a lower bound fora:

a ù amin = −
mg

2
S m − tanf

1 + m tanf
D . s32d

If this condition is fulfilled, then Eq.(30) is always satisfied
as well. When tanf,1/m, there is an upper bound fora:

a ø amax=
mg

2
S m + tanf

1 − m tanf
D . s33d

If this condition is fulfilled, then Eq.(30) is satisfied as well.
When tanf.1/m, there is no upper bound ona; a can be
arbitrarily large.

Now the indeterminacy of this packing can be calculated.
Selecting the appropriate components from Eq.(29), we
have

Ra = Rb =
mg

2
scosf + a sinfd. s34d

The maximum and minimum possible forces can be obtained
by settinga equal toamax or amin, respectively. When this is
done, one obtains

dR =
Rmax− Rmin

mg
=

amax− amin

mg
sinf =

m sinf

cos2 f − m2sin2 f
.

s35d

In the same way, one has

− Ta = Tb =
mg

2
ssinf − a cosfd. s36d

Insertinga=amax anda=amin, we obtain

dT =
m cosf

cos2 f − m2sin2 f
. s37d

The behaviors of Eqs.(35) and (37) are shown in Fig. 3.

III. NUMERICAL APPLICATION

A. Overview

We have investigated numerically the indeterminacy of
granular packings withN=95 particles. Figure 4 shows the

FIG. 2. The particlei is supported by two walls through contacts
a andb. Gravity pulls the particle downwards. The anglef suffices
to characterize the geometry of this simple granular packing.

FIG. 3. The measures of indeterminacydR (solid line) and dT

(dotted line). f is the angle shown in Fig. 2, andm was taken to be
0.3. At f=0, d1=m and d2=2m. Both measures diverge at tanf
=1/m or f<0.41p.
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procedure used to generate the various configurations consid-
ered in this section. First,N=95 grains were placed on a grid
inside a rectangular box of sizeLx3Ly. To prevent the for-
mation of regular arrays of particles, the radii of the particles
are uniformly distributed in the intervalf0.7rmax,rmaxg. Then,
the grains were allowed to fall, under the influence of grav-
ity, and form a packing at the bottom of the box. This process
was simulated by both CD and MD, yielding the CD-1 and
MD-1 configurations. Both simulations continue until the ki-
netic energy decreases to a negligible value or the elapsed
time reaches 6ÎLy/g—i.e., about twice the time a particle
needs to fall a distanceLy. (This second condition is needed
because occasionally a particle falls to the bottom and starts
to roll with a small amount of kinetic energy that is enough
to violate the first condition, but not large enough so that it
reaches another particle or a wall in a reasonable amount of
time.) Then the CD-1 configuration is used as the starting
point for two more simulations, yielding the CD-2 and MD-2
configurations, according to the simulation method used. In
this second CD simulation, the initial guess for the contact
forces isF=0. This procedure was repeated 60 times, yield-
ing a set of 240 configurations. The 60 initial conditions are
distinguished by choosing different particle radii each time.

In the MD simulations, particles interact via linear,
damped springs in both the normal and tangential directions.
When a contact becomes sliding, it is assumed that the tan-
gential spring remains stretched at its maximum length. The
springs have stiffness 1.23105m̄g/ r and damping constant
7.73104sm̄g/ rdÎr /g. This choice of parameters leads to an
average particle overlap of 7310−6 of a particle radius. Usu-
ally particles are much softer in MD simulations, but ex-
tremely hard particles were used here to approach as closely
as possible the CD simulations(average overlap: 6310−8 of
a particle radius). Due to the hardness of the particles, the
MD simulations were very slow, taking roughly 100 times as
long as the CD ones. In the CD simulations, the normal and
tangential resitution coefficients were set to 0. In all cases,
the Coulomb friction ratio wasm=0.3.

Then the resulting configurations are analyzed. The ma-
trix c was constructed, and a singular value decomposition

was used to extract its null space. Then the setFext defined in
Sec. II F is found using the algorithm presented in Sec. II G.
Some examples of the contact states found are shown in
Fig. 5.

The left-hand panel is the CD-1 state, the middle panel is
the MD-2 state, and right-hand panel shows one of the ele-
ments ofFext. One can see already that all three states are
different, but the CD-1 and MD-2 states are closer together
than either one with the extremal state.

Figure 6(a) shows the dimension ofF as a function of the
number of contacts. All points fall onto or just above the line
dim F=2M −3N, confirming the prediction that dimF
ù2M −3N. Figure 6(a) also shows that dimF never exceeds
2M −3N by more than 3. This means that it is reasonable to
use dimF<2M −3N to estimate dimF. There is also no dif-
ference between the classes of configurations, except that
MD simulations tend to have more contacts than the CD
ones.

Figure 6(b) shows the number of sliding contacts ob-
served in the different configurations. A contact is considered
sliding if mR− uTu,em̄g. For Fig. 6(b), e=10−9. Nontrans-
mitting contactssR, uTu,em̄gd are counted as two sliding
contacts. The number of sliding contacts is always less than
or equal to 2M −3N, consistent with our analysis of the
boundary ofF in Sec. II E. The difference between the dif-
ferent classes of configurations becomes clear. The CD simu-
lations have very few sliding contacts. The two classes of
MD simulations are also well separated from each other,
with the MD-2 configurations having the most sliding con-
tacts. This difference between the two configurations shows
that the MD simulation is able to retain a memory of how it
was formed. The MD-1 simulation was generated by letting
the particles fall from a given height, whereas the MD-2
simulation was started with the particles almost in their final
position. Therefore, much more energy was dissipated during
the MD-1 simulation than the MD-2 simulations. The differ-
ence in the number of sliding contacts is a sign of their
different histories.

Note that the CD simulations lack this kind of memory. A
closer examination of the CD-2 simulations reveals that there
are initially many sliding contacts, but this number decreases
rapidly to values nearly zero, as shown in Fig. 6(b). There is
one exceptional simulation, indicated by the cross nearMs
<20, dimF<30, where the system seems to be trapped in
some corner ofF and unable to escape.(The nearby CD-1
simulation probably represents a similar situation, but the
two points were generated by different random number
seeds, so it is probably a coincidence that they are so close
together.)

B. Measurement of indeterminacy

1. Local indeterminacy

The local indeterminacy presented in Sec. II F can be cal-
culated. In Fig. 7, we show the distribution ofdR anddT for
the four different families of configurations. In all cases, the
distributions are exponential, except where a sharp peak ap-
pears neardR, dT=0. Note that similar exponential tails are
observed in contact force distributions.

FIG. 4. A diagram showing the relationship between the various
configurations analyzed in this section. First, 95 grains were placed
on a rectangular grid. Then, the grains were allowed to fall, under
gravity, and settle at the bottom of the container. This process was
simulated by both CD and MD, yielding the CD-1 and MD-1 con-
figurations. Then the CD-1 configuration was taken as the initial
condition for two more simulations, yielding CD-2 and MD-2.
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The MD distributions show slightly larger indetermina-
cies than the CD ones, independent of the method of gener-
ating the configuration. No contacts were observed with in-
finite indeterminacies, although it is theoretically possible, as
was shown in Sec. II H. Infinite indeterminacy may exist in
only special packings with very small number of particles.

2. Global indeterminacy

Let us now consider global indeterminacy. Histograms of
thedR anddT, defined in Eq.(24), are shown in Fig. 8 for the
three different families of configurations.

This measure of indeterminacy has very different proper-
ties from the previous one. In Fig. 7, the most probable val-

ues of the indeterminacy were small, but in Fig. 8, the prob-
ability density function presents two maxima, one close to
dR, dT=0 and the another well separated from the smallest
values. The second maximum is by far the largest, so maxi-
mizing or minimizing a contact force usually involves
changing many forces throughout the packing, even when
the change at the contact in question is small. The maxima in
Fig. 8 can be taken as crude estimates of the diameter ofF,
indicating thatF has a diameter of approximately 60m̄g in
the CD simulations and 75m̄g in the MD simulations. Con-
sistent with Fig. 7, the MD simulations show slightly higher
indeterminacy than the CD ones. Finally, note that the curves
for the normal and tangential components are nearly the
same in Fig. 8, but clearly different in Fig. 7.

FIG. 5. Three different contact states for a configuration withN=95 particles. The CD-1 state obtained from contact dynamics is on the
left. There areM =160 contacts. Then this configuration was allowed to relax in a molecular dynamics simulation, resulting in the MD-2
configuration shown in the middle. During the relaxation, the number of contacts increases toM =166. The state on the right is the extremal
state of the CD-1 configuration with the maximum norm. The thickness of the lines connecting the centers is proportional to the normal
force, and tangential forces are shown by lines tangent to the particle surfaces.
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3. Force chains

One of the most remarkable characteristics of granular
packings is that most of the force is carried by a small frac-
tion of the contacts, which are organized in linear structures

called force chains. Examples of force chains are clearly vis-
ible in Fig. 5. This figure also suggests that indeterminacy is
also concentrated along force chains—it is the force bearing
contacts which differ the most between the three panels. We
can confirm this impression by dividing the contacts into two
different classes, those with above average forces and those
with below average forces. In Ref.[16], it was shown that
these two populations of contacts have different properties,
the former being associated with force chains.(In our case,
these two classes do not have exactly the same meaning as in
Ref. [16], as the stress is not uniform throughout the packing.
Nevertheless, it is still possible for us to isolate the contacts
in the force chains, at least in the lower part of the packing.)
In Fig. 9, we show the distributions of local indeterminacy in
the CD configurations for each class of contact.

The two classes yield quite different distributions. The
peak atdR, dT=0 is due entirely to the contacts with below
average force, while the contacts with large indeterminacy
have above average forces. Thus, force chains are also “in-
determinacy chains.”

We can examine the distribution of global indeterminacy
as well. This is done in Fig. 10.

The small maximum neardR, dT=0 is due entirely to con-

tacts withR, R̄. The main maximum has contributions from

FIG. 6. (a) The dimension of the set of possible contact statesF
as a function of the number of contactsM. The solid line shows the
lower limit dim F=2M −3N. (b) The numberMs of sliding contacts
as a function of dimF. The straight line showsMs=2M −3N. A
contact is considered sliding ifmR− uTu,em̄g, with e=10−9. Non-
transmitting contactssR,T,em̄gd count as two sliding contacts,
consistent with our discussion in Sec. II E. Four different families
of simulations are shown: triangles, MD-1; circles, MD-2; crosses,
CD-1; 3’s, CD-2.

FIG. 7. Histograms of local indeterminacydR (thick lines) and
dT (thin lines), defined in Eq.(23), for the CD configurations(solid
lines) and MD configurations(dashed lines), plotted semilogarith-
mically. The thick lines showdR and the thin linesdT. The distri-
butions are normalized so that their integral is unity; hence, we call
them probability density functions.

FIG. 8. Histograms of global indeterminacydR (thick lines) and
dT (thin lines), defined in Eq.(24), for the CD simulations(solid
lines) and the MD simulations(dashed lines).

FIG. 9. Probability distributions of the local indeterminaciesdR

(solid lines) and dT (dashed lines) for contacts withR, R̄ (thin

lines) and for R. R̄ (thick lines), whereR̄=9.3m̄g is the average
normal force. Only data from the CD-1 simulations are shown; the
others yield similar curves.
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both classes of contacts, but removing the weak contacts
causes the maximum to shift towards larger values.

4. Alternative measurements of indeterminacy

In Ref. [14], indeterminacy is measured in a different
way. A configuration is given to the CD simulation program,
and an iterative solver of the CD simulation is asked for a
possible solution to the forces. This solution is then per-
turbed slightly and given to the iterative solver as an initial
guess, and a new solution is obtained. This is repeated many
times, and the force network ensemble is sampled in the
same way as different statistical mechanical ensembles are
sampled in Monte Carlo simulations. Of course, there is no
guarantee that that this method will weight appropriately the
different regions ofF or even that it will explore all parts
of F.

We have carried out this procedure on our packings. For
each configuration, we have obtained 500 different solutions.
The solutions are perturbed by multiplying all the contact
forces by a random number uniformly distributed between
0.5 and 1.5. Then the centerF+ of F can be estimated by
averaging over all 500 points and the radiusr of F can be
estimated by the variance:

r = S 1

500oi=1

500

fFi − F+g2D1/2

. s38d

Here,Fi are the solutions obtained from the iterative solver.
Averaging over all 60 configurations in each class, we obtain
r =s33±1.4dm̄g for the CD-1 configurations,r =s34±1.3dm̄g
for CD-2, r =s41±1.7dm̄g for MD-1, andr =s40±1.5dm̄g for
MD-2. These values are quite close to half the diameter ofF
estimated from Fig. 8. In all cases, the standard deviation of
r is about 12m̄g, which is also consistent with Fig. 8. This
suggests that one can indeed sampleF in this way.

C. Comparison between MD and CD

1. Distance between the states

Next, we would like to examine more closely the differ-
ence between the forces calculated by MD and CD. One way

to do this is to compare the CD-1, CD-2, and MD-2 configu-
rations, where the particles positions are nearly identical. The
distance between two statesFA andFB is simply iFA−FBi. If
FA andFB have different numbers of contacts, one can insert
0’s into the appropriate places so that they have the same
dimension.

We find that the distance between CD-1 and CD-2 is
s50±3dm̄g, while s75±4dm̄g separates CD-1 and MD-2.
Thus, the MD moves the forces farther away from the initial
state than CD does. But the MD-2 and CD-2 states are sepa-
rated by onlys45±3dm̄g, indicating that they move in ap-
proximately the same direction. Note that all these distances
are less than, but of approximately the same magnitude as,
the diameter ofF. Hence changing from CD to MD or eras-
ing the memory of CD causes a perturbation in the forces of
roughly the same size as their indeterminacy.

2. Relation to extremal states

To see more precisely where the state found by the simu-
lation stands in relation to the extremal states, let us consider
the following quantities:

R* =
Rsim − Rmin

Rmax− Rmin
, T* =

Tsim − Tmin

Tmax− Tmin
, s39d

whereRsim andTsim are the contact forces found by the simu-
lation and Rmax and Tmax are the maximum values these
forces could attain in this configuration, whileRmin andTmin
are the minimum forces.R* =0 means that the simulation
chose the minimum possible force whileR* =1 means that it
chose the maximum. In Fig. 11, we show histograms ofR*
and T* for the four families of configurations. Surprisingly,
these distributions depend more on the history of the con-
figuration than on the simulation method. When the particles
are dropped and allowed to settle(CD-1 and MD-1), the
normal forces are larger, relative to their minimum and maxi-
mum possible values, than when the particles are simply
placed into their final positions(CD-2 and MD-2). In the
tangential case, the CD-1 and MD-1 states show more values
clustered around the middle of the allowed interval than the
CD-2 and MD-2 states. On the other hand, the CD-2 and
MD-2 states have more contacts at their maximum or mini-
mum values. These results show that the CD method is ca-
pable of representing the history of the packing, even though
this is not reflected in the number of sliding contacts.

D. Contact force distributions

1. Extremal vs simulated states

The contact force distributions in the various types of
contacts states are compared in Fig. 12.

The extremal and contact dynamics distributions coincide
for R,30m̄g, but then separate, with the extremal states ex-
hibiting more contacts with large forces. This is true even of
extremal states found while minimizingR. All the distribu-
tions are approximately exponential, similar to those found
in other studies[12,16]. This result suggests that the expo-
nential contact force distributions are a property of all mem-
bers ofF. This means that these exponential tails are prob-

FIG. 10. Probability distributions of the global indeterminacies

dR (solid lines) anddT (dashed lines) for contacts withR, R̄ (thin

line) and for R. R̄ (thick line), where R̄ is the average normal
force. Only data from the CD-1 simulations are shown; the others
yield similar curves.
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ably due to some property of Eq.(5) and can be studied
using the force network approach.

2. MD vs CD

Finally, we compare in Fig. 13 the normal contact force
distributions for the four different families of simulations.
Both CD-1 and MD-1 yield similar curves, obeying an ex-

ponential falloff out to the largest observed values ofR. On
the other hand, CD-2 and MD-2 have fewer contacts at these
large values. This suggests that during the formation of the
packing, some of the kinetic energy is stored as elastic en-
ergy in the force chains. If the packing is formed with very
little kinetic energy(as in the case of CD-2 and MD-2),
fewer large contact forces are present.

IV. CONCLUSIONS

One conclusion that can be drawn from this work is the
importance of sliding contacts. In Sec. II E, we showed that
they are associated with the boundary ofF and hence are a
sign that the packing is close to yielding. Furthermore, our
results suggest that there should be fewer than 2M −3N slid-
ing contacts(counting nontransmitting contacts as two slid-
ing contacts) in a stable packing, and no counterexamples
were found among the 240 configurations that were exam-
ined. If a granular packing is slowly loaded, our work pre-
dicts that the number of sliding contacts will increase and
reach 2M −3N when the packing yields. The MD algorithm
produces many more sliding contacts than CD. This suggests
that packings under CD are much more stable than under
MD.

We were able to calculate the local indeterminacy—that
is, the range of values a given contact force can assume. We
found that the contacts with large indeterminacy are also
those contacts that make up force chains. Therefore, the pri-
mary origin of indeterminacy is that the amplitudes of the
force chains can change. This result also suggests that force
chains could be understood by investigating the null space of
the contact matrixc, since the difference between any two
allowed states belongs to this set.

The global indeterminacy measures how much the entire
network must be adjusted in order to maximize or minimize
a force at a given contact. The reorganizations required for
most contacts are significant, even when the local indetermi-
nacy is small. The global indeterminacy can also be used to
estimate the diameter ofF. This diameter in turn allows one
to appreciate the magnitude of changes occurring within the
force network. For example, we saw that changing the simu-
lation method changes the force network by an amount

FIG. 11. Histograms ofR* andT* , defined in Eq.(39), for the
four different configurations. The solid lines show CD simulations,
and the dotted lines show MD simulations. The thick lines show the
results of dropping the particles(CD-1 and MD-1), and the thin
lines show the result of obtaining the forces with very little particle
movement(CD-2 and MD-2).

FIG. 12. Histogram of the normal forceR in the simulated states
and various classes of extremal states. Sixty configurations ofN
=95 particles were considered. The curves for the extremal states
have less noise because each configuration contributesM extremal
states, but only one contact dynamics state.

FIG. 13. Histogram of the normal forceR for the different fami-
lies of simulations: CD-1, thick solid line; CD-2, thin solid line;
MD-1, thick dashed line; MD-2, thin dashed line.
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roughly equivalent to the diameter ofF. Erasing the memory
of a CD simulation changes the forces by roughly half as
much. Our estimates of the diameter ofF are consistent with
those obtained using a Monte Carlo–like procedure to
sampleF.

Finally, we made several observations about how a pack-
ing’s “memory” is formed. When a packing is formed vio-
lently, with much kinetic energy, some of this energy ends up
stored in the contacts. Such packings exhibit stronger force
chains and larger contact forces than packings formed gently,

with very little kinetic energy. Both CD and MD simulations
show this effect, although it is more significant in the MD
simulations.
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